How To Treat Piglets With Diarrhea?

How To Treat Piglets With Diarrhea
Treatment of piglets for severe diarrhea begins with the drug ‘Regidron’, which restores the water balance of the body. On the first day, they adhere to a strict diet, and they also intensively water the animals. As a liquid, folk remedies are suitable: infusions of medicinal herbs, rice broth.

How do you stop diarrhea in piglets?

Diarrhea in neonatal piglets: treatments In Vraeghe’s opinion, supplying the piglets with electrolytes in water is the first step. In particular, when diarrhea is caused by rotavirus, this is an indispensable measure to reduce mortality. If antibiotics are required, he prefers to administer them via the drinking water.

  • They administer the water in additional dishes.
  • He adds that it should be given 2-3 times a day, so that the water remains fresh and clean (Photo 1).
  • In slowly-spreading and individual cases, we inject or orally drench the sick animals with antibiotics.
  • And, on the other hand, in the fast advancing cases, we inject/orally drench them the first time so they are treated fast.

Although he admits that it is very effective, they try to avoid it because it involves entering the pens with the risk of spreading diarrhea through footwear. How To Treat Piglets With Diarrhea Photo 1. When using dishes to provide piglets with water, they must be kept clean and water must be added frequently. Remember that if milk replacer is given during the first few days, it should be taken away if diarrhea appears because it will only make the problem worse.

Ackerman does share Vraeghe’s opinion in this case. He tells us that they generally do not make water available in dishes for the piglets. Some people give them milk replacers or water in small milking cups, but in his opinion many times they are a reservoir for disease. Sometimes they put potato starch in dishes in the pens with small piglets.

With regard to viral diseases such as rotavirus, Ackerman says that there are secondary bacterial infections that they try to prevent, so they always start antibiotic treatment. Cantín is states plainly, there are no new developments in the treatment of diarrhea: water with rehydrating solution and oral or injectable antibiotics are still the best measures.

  1. Don’t forget about improving environmental comfort, a litter that has diarrhea will be wet and cold.
  2. Frequent use of drying powders and adding dry shredded paper will result in piglets being in a better condition to fight the infection.
  3. As for administering active charcoal to piglets, he does not consider it essential, although on some occasions it may help.

Ackerman reminds us that before treating the piglets, we must make sure that the cause isn’t related to the sow or the piglets’ environment. Specifically, we must ensure the sow is producing sufficient milk. In some cases administering oxytocin is recommended to stimulate milk letdown.

Checking the sow’s health status involves seeing that the sow gets up every day, moves, and defecates, checking that she does not have a fever and if any signs of illness are detected, treating them with the corresponding treatment: steroid or non-steroidal anti-inflammatory drugs and antibiotics if necessary.

He tells us about a very effective measure (in his opinion, a measure used too infrequently): letting the sow leave the pen and walk around the room a little. He admits that this is a laborious and uncommon handling procedure, but it helps the sow to be physiologically “activated” and can be very useful on some occasions.

Cantín also places importance on treating the sow because, when the litter has a problem, the sow will have another: mammary pain because she will not be nursed with enough force and her milk will not be removed. Using anti-inflammatory drugs in the sow will be important, and even using antibiotics in the sow, whether she develops a fever or not, because these hyperprolific sows, with so many piglets farrowed, are more prone to retention, more dystocia, and are manipulated more.

The use of post-farrowing prostaglandins may be recommended, depending on the history of the farm. Vraeghe shares that in some cases that require antibiotic treatment, they prefer the option of preventing diarrhea by insuring a good gut health of the sow around farrowing, since the microbial contamination of the farrowing room will depend largely on what the sow excretes in her feces.

  • The danger of preventative treatments Guedes and Vraeghe warn about a frequently used measure: the use of preventive antibiotics in piglets during the first days of life has a negative impact on the microbiota in the animals.
  • In Guedes’ opinion the dysbacteriosis that will be caused greatly increases the likelihood of problems caused by Clostridium difficille,

He prefers to use probiotics for the piglets as a preventive measure. When neonatal diarrhea occurs, treating piglets through caring for the sow, rehydration of the piglets, antibiotics, and improved comfort is absolutely necessary but, as described in this series of articles, actual improvement of neonatal diarrhea requires a comprehensive approach, as shown in the summary table (Table 1).

1. Proper diagnosis of the agents involved.
2. Necessary prevention through the use of commercial vaccines, and autovaccines.
3. Controlled oral exposure (feedback) may be necessary in some cases, but should be limited to certain pathologies and should always be done in a controlled manner.
4. Proper cleaning and disinfection, and sanitary down time between batches are indispensable protocols in controlling diarrhea.
5. Feed quality in the final phase of gestation and at the beginning of lactation has an impact on the appearance of diarrhea.
6. Feed and water management should be reviewed when we face these problems.
7. Make sure the piglets drink enough colostrum.
8. An improper environment, air currents, etc. are factors that can cause diarrhea.
9. Rehydration and antibiotics are the most effective treatments.
10. Don’t forget about taking care of the sow.

Diarrhea in neonatal piglets: treatments

What medicine do you give a pig for diarrhea?

Abstract – Post-weaning diarrhea (PWD) is one of the most serious threats for the swine industry worldwide. It is commonly associated with the proliferation of enterotoxigenic Escherichia coli in the pig intestine. Colistin, a cationic antibiotic, is widely used in swine for the oral treatment of intestinal infections caused by E.

coli, and particularly of PWD. However, despite the effectiveness of this antibiotic in the treatment of PWD, several studies have reported high rates of colistin resistant E. coli in swine. Furthermore, this antibiotic is considered of very high importance in humans, being used for the treatment of infections due to multidrug-resistant (MDR) Gram-negative bacteria (GNB).

Moreover, the recent discovery of the mcr – 1 gene encoding for colistin resistance in Enterobacteriaceae on a conjugative stable plasmid has raised great concern about the possible loss of colistin effectiveness for the treatment of MDR-GNB in humans.

Consequently, it has been proposed that the use of colistin in animal production should be considered as a last resort treatment only. Thus, to overcome the economic losses, which would result from the restriction of use of colistin, especially for prophylactic purposes in PWD control, we believe that an understanding of the factors contributing to the development of this disease and the putting in place of practical alternative strategies for the control of PWD in swine is crucial.

Such alternatives should improve animal gut health and reduce economic losses in pigs without promoting bacterial resistance. The present review begins with an overview of risk factors of PWD and an update of colistin use in PWD control worldwide in terms of quantities and microbiological outcomes.

Why is my piglet having diarrhea?

Introduction – Animal breeding is an old practice developed by humans for the production of dairy foods (cattle), transport (horses), rodeo or recreational events (dogs and bison for instance). The task of domestication and/or specific animal breeding at the industrial level includes controlled mating, successful reproduction of captive species and mass production of selected strains for our own consumption or pleasure.

  • This dates back to the Neolithic period (about 7000 BC) when the men started to settle down and organize food in tribes and villages before cities and urban areas existed.
  • The task has always been hard and difficult, but it becomes strictly necessary now and then as we have stopped hunting and abandoned our daily milk and meat food supply to depend only on intensive animal farming and/or mass-production.

Animal production for human consumption needs to drastically increase worldwide now as the human population grows nowadays at an unprecedented rate. Modern animal production practices lay on sustainable maintenance of health conditions in livestock that largely rely on the (too) extensive use of antimicrobial drugs 1,

Similarly to many other domesticated animals, i.e. those raised in an agricultural setting to produce food, pigs and piglets suffer various infections that can come from their environment, nutrition, internal parasites, viruses, bacterial microbes and/or a combination of all 2, This represents a major threat for agronomic health and eventually for human health, as there are cases of influenza or other infectious disease passed on to humans from pigs 3, 4,

Therefore, studying microbial diseases in swine may help not only to improve livestock health conditions but also envision new treatment for human infectious diseases 5, One of the main diseases related to microbes and piglet livestock is known as piglet diarrhea that can have devastating outcomes on animal health and thereby food production industry as most recently documented in China 6,

Porcine or Piglet Epidemic Diarrhea (PED) can rapidly spread through vomit and feces in livestock, resulting in loss of appetite and severe dehydration if not death. Ill animals usually grow sick and lose weight, which strongly challenges the ethics and the meat supply quality at the international level 7, 8,

Piglet diarrhea or ” scour “, an excretion of feces containing excess fluid in 5–15 days-old pigs, is usually caused by various strains of Coccidia ( Isospora suis ), Clostridial enteritis, Escherichia coli, Salmonella choleraesuis and Brachyspira hampsonii/hyodysenteriae, among many other bacterial pathogens that proliferate in poor hygiene, housing and/or feeding conditions 9, 10, 11, 12, 13, 14,

Elimination of noxious agents by medication has been early used and as early proved to have various limitations, the most important of them being some adverse effects on the animals and human (hives, breathlessness, swelling, vomiting, seizures, fevers, blood in the urine, bloody diarrhea, etc.) 15,

Use of antibiotics to treat bacterial and parasitic infections may become more dangerous than inoculating the microbe or the virus itself, especially over a long-term medication as shown for amoxicillin 16, Another problem is the multi-drug resistance capacity that is often developed by specific microbial isolates and hamper treatment 17,

Finally, using antibiotics have been shown to drastically alter animal gut flora, which urged to find new remedies to treat piglet infections following epidemic diarrhea outbreaks 18, 19, Various non antibiotic strategies including feed additives such as acidifiers, prebiotics, yeast products and/or plant oil chemicals have been proposed in diets for pigs as an alternative to antibiotic molecule 20,

However, in some cases, using plant oils as alternatives to antibiotics was not without side effects in piglets 21, Therefore, more promising alternatives were suggested from using probiotics such as Bacillus strains or Lactobacillus sp. to stimulate digestive enzyme activity and gut integrity, and thereby immune system and growth performance in swine 22, 23, 24, 25, 26, similarly to studies of hyperlipidemia rodent models 27, 28, 29,

  • This study aimed to find a new medicine to be applied in agro-alimentary food industry, in particular in prevention and curing of piglet diarrhea.
  • To achieve this, the tripartite composition of a specific Bacillus ( B.) strain-supplemented formula ( Bacillus subtilis Y-15, B.
  • Amyloliquefaciens DN6502 and B.

licheniformis SDZD02) was produced in a microbiology laboratory industrial platform from Shandong and delivered with food nutrients to piglets in experimental animal farms from Henan Province (China). The recovery of healthy conditions was observed in piglets treated with Bacillus, similarly to the group of piglets treated with medicinal chemical drugs (Colistin and Kitasamycin).

How can you prevent diarrhea for nursing piglets?

Managing diarrhea in nursing piglets – There are many techniques available to producers to help reduce the occurrence of diarrhea in farrowing units. Most of these strategies are regularly implemented and widely known to pig farm managers. However, to identify potential opportunities, for improvement, it’s always critical to review standard practices performed on the farm.

Sows selected for breeding should have a minimum of 14 functional teats. Vaccinate sows before farrowing, specifically with vaccines that protect the litter against microorganisms that may cause diarrhea, such as Escherichia coli, Rotavirus, and Clostridium sp. The farrowing room should be power washed an disinfected before sows enter (Dvorak, 2008; Taylor & Roese, 2006).

Pre-farrow (before sows enter the room)

Provide a supplemental heat source for piglets (heat lamp, creep area, heated floor). The temperature for a newborn piglet should be approximately 90°F (32.2°C). Ensure the piglet and sow waterers are working correctly. Check for high airflow areas in the farrowing room (Dawson, 2021; Towers, 2012).

Post-farrow (up until 24 hours after farrowing)

Dry piglets right after farrowing using a high-quality drying agent. Assist piglets with colostrum intake (min.220g per piglet). Piglets should ingest colostrum only from their mother, not from another sow. Split suckle large litters; this involves dividing the litter into two groups and letting the small piglets ingest colostrum for 30 to 60 minutes. Utilize cross-fostering following a strict protocol. All piglets should suckle on the sow until weaning (This may require nurse sows). The number of piglets per sow should not be greater than the number of functional teats. If this is not the case, consider cross-fostering. Clean the pen right after farrowing (remove the placenta, fetal remains, blood, and feces from the pen) (Rea, 2018; Vansickle, 2013).

Lactation (from 24 hours after farrowing to weaning)

Clean pen frequently (do not share cleaning objects between litters with and without diarrhea). Perform the daily care of non-infected litters before attending to the infected litters. Adjust the heat source daily by watching how the piglets lay; increase the temperature if piglets are piled up. Under ideal conditions, piglets should be lying on their side with their legs extended. Use a high-quality dry disinfectant safe for piglets’ skin and mucosa (Stalosan Ⓡ F) at least once a week in a pen or in the entire farrowing house to reduce moisture, improve animal welfare, and eliminate many pathogens.

What do piglets eat when they have diarrhea?

Towards Zero Zinc Oxide: Feeding Strategies to Manage Post-Weaning Diarrhea in Piglets 1. FAO’s Animal Production and Health Division Meat & Meat Products. ; Available online: 2. FAO. OECD Meat, OECD-FAO Agricultural Outlook 2020–2028. OECD Publishing; Paris, France: 2020. pp.162–173.3. Campbell J.M., Crenshaw J.D., Polo J. The biological stress of early weaned piglets.J. Anim. Sci. Biotechnol.2013; 4 :2–5. doi: 10.1186/2049-1891-4-19.4. Jensen P., Recén B. When to wean—Observations from free-ranging domestic pigs. Appl. Anim. Behav. Sci.1989; 23 :49–60. doi: 10.1016/0168-1591(89)90006-3.5. Bøe K. The process of weaning in pigs: When the sow decides. Appl. Anim. Behav. Sci.1991; 30 :47–59. doi: 10.1016/0168-1591(91)90084-B.6. Pluske J.R., Hampson D.J., Williams I.H. Factors influencing the structure and function of the small intestine in the weaned pig: A review. Livest. Prod. Sci.1997; 51 :215–236. doi: 10.1016/S0301-6226(97)00057-2.7. Colson V., Martin E., Orgeur P., Prunier A. Influence of housing and social changes on growth, behaviour and cortisol in piglets at weaning. Physiol. Behav.2012; 107 :59–64. doi: 10.1016/j.physbeh.2012.06.001.8. Xiong X., Tan B., Song M., Ji P., Kim K., Yin Y., Liu Y. Nutritional Intervention for the Intestinal Development and Health of Weaned Pigs. Front. Vet. Sci.2019; 6 :1–14. doi: 10.3389/fvets.2019.00046.9. Lallès J.P., Bosi P., Smidt H., Stokes C.R. Nutritional management of gut health in pigs around weaning. Proc. Nutr. Soc.2007; 66 :260–268. doi: 10.1017/S0029665107005484.10. McCracken B.A., Spurlock M.E., Roos M.A., Zuckermann F.A., Gaskins H.R. Weaning Anorexia May Contribute to Local Inflammation in the Piglet Small Intestine.J. Nutr.1999; 129 :613–619. doi: 10.1093/jn/129.3.613.11. Castillo M., Martín-Orúe S.M., Nofrarías M., Manzanilla E.G., Gasa J. Changes in caecal microbiota and mucosal morphology of weaned pigs. Vet. Microbiol.2007; 124 :239–247. doi: 10.1016/j.vetmic.2007.04.026.12. Heo J.M., Opapeju F.O., Pluske J.R., Kim J.C., Hampson D.J., Nyachoti C.M. Gastrointestinal health and function in weaned pigs: A review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds.J. Anim. Physiol. Anim. Nutr. (Berl.) 2013; 97 :207–237. doi: 10.1111/j.1439-0396.2012.01284.x.13. Pié S., Lallès J.P., Blazy F., Laffitte J., Sève B., Oswald I.P. Weaning Is Associated with an Upregulation of Expression of Inflammatory Cytokines in the Intestine of Piglets.J. Nutr.2004; 134 :641–647. doi: 10.1093/jn/134.3.641.14. Rhouma M., Fairbrother J.M., Beaudry F., Letellier A. Post weaning diarrhea in pigs: Risk factors and non-colistin-based control strategies. Acta Vet. Scand.2017; 59 :1–19. doi: 10.1186/s13028-017-0299-7.15. Fairbrother J.M., Nadeau É., Gyles C.L. Escherichia coli in postweaning diarrhea in pigs: An update on bacterial types, pathogenesis, and prevention strategies. Anim. Health Res. Rev.2005; 6 :17–39. doi: 10.1079/AHR2005105.16. Roussel C., Cordonnier C., Livrelli V., Van de Wiele T., Blanquet-Diot S. Enterotoxigenic and Enterohemorrhagic Escherichia coli : Survival and Modulation of Virulence in the Human Gastrointestinal Tract. In: Amidou S., editor. Escherichia coli—Recent Advances on Physiology, Pathogenesis and Biotechnological Applications. InTech; London, UK: 2017. pp.3–24.17. Dubreuil J.D. Enterotoxigenic Escherichia coli targeting intestinal epithelial tight junctions: An effective way to alter the barrier integrity. Microb. Pathog.2017; 113 :129–134. doi: 10.1016/j.micpath.2017.10.037.18. Dubreuil J.D., Isaacson R.E., Schifferli D.M. Animal Enterotoxigenic Escherichia coli, EcoSal Plus.2016; 7 :1–47. doi: 10.1128/ecosalplus.ESP-0006-2016.19. Hill G.M., Shannon M.C. Copper and Zinc Nutritional Issues for Agricultural Animal Production. Biol. Trace Elem. Res.2019; 188 :148–159. doi: 10.1007/s12011-018-1578-5.20. Sloup V., Jankovská I., Nechybová S., Peřinková P., Langrová I. Zinc in the Animal Organism: A Review. Sci. Agric. Bohem.2017; 48 :13–21. doi: 10.1515/sab-2017-0003.21. McDonald P., Edwards R.A., Greenhalgh J.F.D., Morgan C.A., Sinclair L.A., Wilkinson R.G. Animal Nutrition.7th ed. Benjamin Cummings; San Francisco, CA, USA: 2011.22. Poulsen H.D. Zinc oxide for weanling piglets. Acta Agric. Scand. A Anim. Sci.1995; 45 :159–167. doi: 10.1080/09064709509415847.23. EMA. CVMP, EMA—Zinc Oxide—Annex II—Scientific Conclusions and Grounds for the Refusal of the Marketing Authorisation and for Withdrawal of the Existing Marketing Authorisations. EMEA; Amsterdam, The Netherlands: 2017.24. Hill G.M., Mahan D.C., Carter S.D., Cromwell G.L., Ewan R.C., Harrold R.L., Lewis A.J., Miller P.S., Shurson G.C., Veum T.L., et al. Effect of pharmacological concentrations of zinc oxide with or without the inclusion of an antibacterial agent on nursery pig performance.J. Anim. Sci.2001; 79 :934–941. doi: 10.2527/2001.794934x.25. Davin R., Manzanilla E.G., Klasing K.C., Pérez J.F. Effect of weaning and in-feed high doses of zinc oxide on zinc levels in different body compartments of piglets.J. Anim. Physiol. Anim. Nutr. (Berl.) 2013; 97 :6–12. doi: 10.1111/jpn.12046.26. King J.C., Shames D.M., Woodhouse L.R. Zinc Homeostasis in Humans.J. Nutr.2000; 130 :1360S–1366S. doi: 10.1093/jn/130.5.1360S.27. Hu C., Song J., Li Y., Luan Z., Zhu K. Diosmectite-zinc oxide composite improves intestinal barrier function, modulates expression of pro-inflammatory cytokines and tight junction protein in early weaned pigs. Br.J. Nutr.2013; 110 :681–688. doi: 10.1017/S0007114512005508.28. Hu C.H., Xiao K., Song J., Luan Z.S. Effects of zinc oxide supported on zeolite on growth performance, intestinal microflora and permeability, and cytokines expression of weaned pigs. Anim. Feed Sci. Technol.2013; 181 :65–71. doi: 10.1016/j.anifeedsci.2013.02.003.29. Johansen M., Jørgensen L., Schultz M.S. Effect of Zinc and Organic Acids on Diarrhoea in the Weaner Period. SEGES; Copenhagen, Denmark: 2007.30. Poulsen H. Zinc and copper as feed additives, growth factors or unwanted environmental factors.J. Anim. Feed Sci.1998; 7 :135–142. doi: 10.22358/jafs/69961/1998.31. Hu C., Song J., You Z., Luan Z., Li W. Zinc Oxide–Montmorillonite Hybrid Influences Diarrhea, Intestinal Mucosal Integrity, and Digestive Enzyme Activity in Weaned Pigs. Biol. Trace Elem. Res.2012; 149 :190–196. doi: 10.1007/s12011-012-9422-9.32. Case C.L., Carlson M.S. Effect of feeding organic and inorganic sources of additional zinc on growth performance and zinc balance in nursery pigs.J. Anim. Sci.2002; 80 :1917–1924. doi: 10.2527/2002.8071917x.33. Hahn J.D., Baker D.H. Growth and plasma zinc responses of young pigs fed pharmacologic levels of zinc.J. Anim. Sci.1993; 71 :3020–3024. doi: 10.2527/1993.71113020x.34. Pearce S.C., Sanz Fernandez M.-V., Torrison J., Wilson M.E., Baumgard L.H., Gabler N.K. Dietary organic zinc attenuates heat stress–induced changes in pig intestinal integrity and metabolism.J. Anim. Sci.2015; 93 :4702–4713. doi: 10.2527/jas.2015-9018.35. Grilli E., Tugnoli B., Vitari F., Domeneghini C., Morlacchini M., Piva A., Prandini A. Low doses of microencapsulated zinc oxide improve performance and modulate the ileum architecture, inflammatory cytokines and tight junctions expression of weaned pigs. Animal.2015; 9 :1760–1768. doi: 10.1017/S1751731115001329.36. Zhu C., Lv H., Chen Z., Wang L., Wu X., Chen Z., Zhang W., Liang R., Jiang Z. Dietary Zinc Oxide Modulates Antioxidant Capacity, Small Intestine Development, and Jejunal Gene Expression in Weaned Piglets. Biol. Trace Elem. Res.2017; 175 :331–338. doi: 10.1007/s12011-016-0767-3.37. Zhang B., Guo Y. Supplemental zinc reduced intestinal permeability by enhancing occludin and zonula occludens protein-1 (ZO-1) expression in weaning piglets. Br.J. Nutr.2009; 102 :687–693. doi: 10.1017/S0007114509289033.38. Powell S.R. The Antioxidant Properties of Zinc.J. Nutr.2000; 130 :1447S–1454S. doi: 10.1093/jn/130.5.1447S.39. Lee S.R. Critical Role of Zinc as Either an Antioxidant or a Prooxidant in Cellular Systems. Oxid. Med. Cell. Longev.2018; 2018 :1–11. doi: 10.1155/2018/9156285.40. Carlson M.S., Hill G.M., Link J.E. Early- and traditionally weaned nursery pigs benefit from phase-feeding pharmacological concentrations of zinc oxide: Effect on metallothionein and mineral concentrations.J. Anim. Sci.1999; 77 :1199–1207. doi: 10.2527/1999.7751199x.41. Pasquet J., Chevalier Y., Pelletier J., Couval E., Bouvier D., Bolzinger M.A. The contribution of zinc ions to the antimicrobial activity of zinc oxide. Colloids Surfaces A Physicochem. Eng. Asp.2014; 457 :263–274. doi: 10.1016/j.colsurfa.2014.05.057.42. Söderberg T.A., Sunzel B., Holm S., Elmros T., Hallmans G., Sjöberg S. Antibacterial effect of zinc oxide in vitro. Scand.J. Plast. Reconstr. Surg. Hand Surg.1990; 24 :193–197. doi: 10.3109/02844319009041278.43. Surjawidjaja J.E., Hidayat A., Lesmana M. Growth inhibition of enteric pathogens by zinc sulfate: An in vitro study. Med. Princ. Pract.2004; 13 :286–289. doi: 10.1159/000079529.44. Højberg O., Canibe N., Poulsen H.D., Hedemann M.S., Jensen B.B. Influence of dietary zinc oxide and copper sulfate on the gastrointestinal ecosystem in newly weaned piglets. Appl. Environ. Microbiol.2005; 71 :2267–2277. doi: 10.1128/AEM.71.5.2267-2277.2005.45. Katouli M., Melin L., Jensen-Waern M., Wallgren P., Möllby R. The effect of zinc oxide supplementation on the stability of the intestinal flora with special reference to composition of coliforms in weaned pigs.J. Appl. Microbiol.1999; 87 :564–573. doi: 10.1046/j.1365-2672.1999.00853.x.46. Mores N., Cristani J., Piffer I.A., Barioni W.J., Lima G.M.M. Effects of zinc oxide on postweaning diarrhea control in pigs experimentally infected with E. coli, Arq. Bras. Med. Veterinária e Zootec.1998; 50 :513–523.47. Roselli M., Finamore A., Garaguso I., Britti M.S., Mengheri E. Zinc Oxide Protects Cultured Enterocytes from the Damage Induced by Escherichia coli,J. Nutr.2003; 133 :4077–4082. doi: 10.1093/jn/133.12.4077.48. Capaldo C.T., Nusrat A. Cytokine regulation of tight junctions. Biochim. Biophys. Acta Biomembr.2009; 1788 :864–871. doi: 10.1016/j.bbamem.2008.08.027.49. Sargeant H.R., Miller H.M., Shaw M.-A. Inflammatory response of porcine epithelial IPEC J2 cells to enterotoxigenic E. coli infection is modulated by zinc supplementation. Mol. Immunol.2011; 48 :2113–2121. doi: 10.1016/j.molimm.2011.07.002.50. Gammoh N.Z., Rink L. Nutrition and Immunity. Springer International Publishing; Cham, Switzerland: 2019. Zinc and the Immune System; pp.127–158.51. Ercan M.T., Bor N.M. Phagocytosis by macrophages in zinc-deficient rats. Int.J. Radiat. Appl. Instrum.1991; 18 :765–768. doi: 10.1016/0883-2897(91)90015-D.52. Wirth J.J., Fraker P.J., Kierszenbaum F. Zinc requirement for macrophage function: Effect of zinc deficiency on uptake and killing of a protozoan parasite. Immunology.1989; 68 :114–119.53. Rolles B., Maywald M., Rink L. Influence of zinc deficiency and supplementation on NK cell cytotoxicity.J. Funct. Foods.2018; 48 :322–328. doi: 10.1016/j.jff.2018.07.027.54. Honscheid A., Rink L., Haase H. T-Lymphocytes: A Target for Stimulatory and Inhibitory Effects of Zinc Ions. Endocr. Metab. Immune Disord. Drug Targets.2009; 9 :132–144. doi: 10.2174/187153009788452390.55. Prasad A.S. Zinc: An antioxidant and anti-inflammatory agent: Role of zinc in degenerative disorders of aging.J. Trace Elem. Med. Biol.2014; 28 :364–371. doi: 10.1016/j.jtemb.2014.07.019.56. Kloubert V., Blaabjerg K., Dalgaard T.S., Poulsen H.D., Rink L., Wessels I. Influence of zinc supplementation on immune parameters in weaned pigs.J. Trace Elem. Med. Biol.2018; 49 :231–240. doi: 10.1016/j.jtemb.2018.01.006.57. Ou D., Li D., Cao Y., Li X., Yin J., Qiao S., Wu G. Dietary supplementation with zinc oxide decreases expression of the stem cell factor in the small intestine of weanling pigs.J. Nutr. Biochem.2007; 18 :820–826. doi: 10.1016/j.jnutbio.2006.12.022.58. Yin J., Li X., Li D., Yue T., Fang Q., Ni J., Zhou X., Wu G. Dietary supplementation with zinc oxide stimulates ghrelin secretion from the stomach of young pigs.J. Nutr. Biochem.2009; 20 :783–790. doi: 10.1016/j.jnutbio.2008.07.007.59. MacDonald R.S. The Role of Zinc in Growth and Cell Proliferation.J. Nutr.2000; 130 :1500S–1508S. doi: 10.1093/jn/130.5.1500S.60. Hedemann M.S., Jensen B.B., Poulsen H.D. Influence of dietary zinc and copper on digestive enzyme activity and intestinal morphology in weaned pigs.J. Anim. Sci.2006; 84 :3310–3320. doi: 10.2527/jas.2005-701.61. Brink M.F., Becker D.E., Terrill S.W., Jensen A.H. Zinc Toxicity in the Weanling Pig.J. Anim. Sci.1959; 18 :836–842. doi: 10.2527/jas1959.182836x.62. Burrough E.R., De Mille C., Gabler N.K. Zinc overload in weaned pigs: Tissue accumulation, pathology, and growth impacts.J. Vet. Diagnostic Investig.2019; 31 :537–545. doi: 10.1177/1040638719852144.63. Martin L., Pieper R., Schunter N., Vahjen W., Zentek J. Performance, organ zinc concentration, jejunal brush border membrane enzyme activities and mRNA expression in piglets fed with different levels of dietary zinc. Arch. Anim. Nutr.2013; 67 :248–261. doi: 10.1080/1745039X.2013.801138.64. Komatsu T., Sugie K., Inukai N., Eguchi O., Oyamada T., Sawada H., Yamanaka N., Shibahara T. Chronic pancreatitis in farmed pigs fed excessive zinc oxide.J. Vet. Diagn. Investig.2020; 32 :689–694. doi: 10.1177/1040638720944368.65. Poulsen H.D., Larsen T. Zinc excretion and retention in growing pigs fed increasing levels of zinc oxide. Livest. Prod. Sci.1995; 43 :235–242. doi: 10.1016/0301-6226(95)00039-N.66. Meyer T.A., Lindemann M.D., Cromwell G.L., Monegue H.J., Inocencio N. Effects of Pharmacological Levels of Zinc as Zinc Oxide on Fecal Zinc and Mineral Excretion in Weanling Pigs. Prof. Anim. Sci.2002; 18 :162–168. doi: 10.15232/S1080-7446(15)31506-0.67. Monteiro S.C., Lofts S., Boxall A.B.A. Pre-assessment of environmental impact of zinc and copper used in animal nutrition. EFSA Support. Publ.2010; 7 :1–138. doi: 10.2903/sp.efsa.2010.EN-74.68. Gräber I., Hansen J.F., Olesen S.E., Petersen J., Øtergaard H.S., Krogh L. Accumulation of copper and zinc in Danish agricultural soils in intensive pig production areas. Geogr. Tidsskr.2005; 105 :15–22. doi: 10.1080/00167223.2005.10649536.69. Bak J.L., Jensen J., Larsen M.M. Belysning af Kobber- og Zinkindholdet i Jord—Indhold og Udvikling i Kvadratnettet og Måling på Udvalgte Brugstyper. Volume 159. Aarhus Universitet, Institut for Bioscience; Aarhus, Denmark: 2015.70. Yazdankhah S., Rudi K., Bernhoft A. Zinc and copper in animal feed—Development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin. Microb. Ecol. Health Dis.2014; 25 doi: 10.3402/mehd.v25.25862.71. Slifierz M.J., Friendship R., Weese J.S. Zinc oxide therapy increases prevalence and persistence of methicillin-resistant staphylococcus aureus in pigs: A randomized controlled trial. Zoonoses Public Health.2015; 62 :301–308. doi: 10.1111/zph.12150.72. Vahjen W., Pietruszyńska D., Starke I.C., Zentek J. High dietary zinc supplementation increases the occurrence of tetracycline and sulfonamide resistance genes in the intestine of weaned pigs. Gut Pathog.2015; 7 :3–7. doi: 10.1186/s13099-015-0071-3.73. Bednorz C., Oelgeschläger K., Kinnemann B., Hartmann S., Neumann K., Pieper R., Bethe A., Semmler T., Tedin K., Schierack P., et al. The broader context of antibiotic resistance: Zinc feed supplementation of piglets increases the proportion of multi-resistant Escherichia coli in vivo. Int.J. Med. Microbiol.2013; 303 :396–403. doi: 10.1016/j.ijmm.2013.06.004.74. Ciesinski L., Guenther S., Pieper R., Kalisch M., Bednorz C., Wieler L.H. High dietary zinc feeding promotes persistence of multi-resistant E. coli in the swine gut. PLoS ONE.2018; 13 :e0191660. doi: 10.1371/journal.pone.0191660.75. Johanns V.C., Ghazisaeedi F., Epping L., Semmler T., Lübke-Becker A., Pfeifer Y., Bethe A., Eichhorn I., Merle R., Walther B., et al. Effects of a Four-Week High-Dosage Zinc Oxide Supplemented Diet on Commensal Escherichia coli of Weaned Pigs. Front. Microbiol.2019; 10 doi: 10.3389/fmicb.2019.02734.76. Slifierz M.J., Park J., Friendship R.M., Weese J.S. Zinc-resistance gene CzrC identified in methicillin-resistant Staphylococcus hyicus isolated from pigs with exudative epidermitis. Can. Vet.J. La Rev. Vet. Can.2014; 55 :489–490.77. Yu T., Zhu C., Chen S., Gao L., Lv H., Feng R., Zhu Q., Xu J., Chen Z., Jiang Z. Dietary high zinc oxide modulates the microbiome of ileum and colon in weaned piglets. Front. Microbiol.2017; 8 :1–12. doi: 10.3389/fmicb.2017.00825.78. Starke I.C., Pieper R., Neumann K., Zentek J., Vahjen W. The impact of high dietary zinc oxide on the development of the intestinal microbiota in weaned piglets. FEMS Microbiol. Ecol.2014; 87 :416–427. doi: 10.1111/1574-6941.12233.79. Li B.T., Van Kessel A.G., Caine W.R., Huang S.X., Kirkwood R.N. Small intestinal morphology and bacterial populations in ileal digesta and feces of newly weaned pigs receiving a high dietary level of zinc oxide. Can.J. Anim. Sci.2001; 81 :511–516. doi: 10.4141/A01-043.80. Vahjen W., Pieper R., Zentek J. Bar-Coded Pyrosequencing of 16S rRNA Gene Amplicons Reveals Changes in Ileal Porcine Bacterial Communities Due to High Dietary Zinc Intake. Appl. Environ. Microbiol.2010; 76 :6689–6691. doi: 10.1128/AEM.03075-09.81. Pieper R., Vahjen W., Neumann K., Van Kessel A.G., Zentek J. Dose-dependent effects of dietary zinc oxide on bacterial communities and metabolic profiles in the ileum of weaned pigs.J. Anim. Physiol. Anim. Nutr. (Berl.) 2012; 96 :825–833. doi: 10.1111/j.1439-0396.2011.01231.x.82. Vahjen W., Pieper R., Zentek J. Increased dietary zinc oxide changes the bacterial core and enterobacterial composition in the ileum of piglets.J. Anim. Sci.2011; 89 :2430–2439. doi: 10.2527/jas.2010-3270.83. Starke I.C., Pieper R., Vahjen W., Zentek J. The impact of dietary zinc oxide on the bacterial diversity of the small intestinal microbiota of weaned piglets.J. Vet. Sci. Technol.2014; 5 doi: 10.4172/2157-7579.1000171.84. EFSA. FEEDAP Scientific Opinion on the potential reduction of the currently authorised maximum zinc content in complete feed. EFSA J.2016; 12 doi: 10.2903/j.efsa.2014.3668.85. European Commission, Commission Implementing Decision of 26.6.2017 Concerning, in the Framework of Article 35 of Directive 2001/82/EC of the European Parliament and of the Council, the Marketing Authorisations for Veterinary Medicinal Products Containing “Zinc Oxide” to be Ad. Official Journal of the European Union; Brussels, Belgium: 2017.86. European Commission, Commission Regulation (EC) No 1334/2003 of 25 July 2003 Amending the Conditions for Authorisation of a Number of Additives in Feedingstuffs Belonging to the Group of Trace Elements. Official Journal of the European Union; Brussels, Belgium: 2003.87. European Commission, Commission Implementing Regulation (EU) 2016/1095 of 6 July 2016. Official Journal of the European Union; Brussels, Belgium: 2016.88. Wedekind K.J., Baker D.H. Zinc bioavailability in feed-grade sources of zinc.J. Anim. Sci.1990; 68 :684–689. doi: 10.2527/1990.683684x.89. Scientific Committee for Animal Nutrition of the European Commission, Opinion of the Scientific Committee for Animal Nutrition on the Use of Zinc in Feedingstuffs. European Commission—Health & Consumer Protection Directorate General; Brussels, Belgium: 2003.90. Schell T.C., Kornegay E.T. Zinc concentration in tissues and performance of weanling pigs fed pharmacological levels of zinc from ZnO, Zn-methionine, Zn-lysine, or ZnSO4.J. Anim. Sci.1996; 74 :1584. doi: 10.2527/1996.7471584x.91. Aarestrup F.M., Hasman H. Susceptibility of different bacterial species isolated from food animals to copper sulphate, zinc chloride and antimicrobial substances used for disinfection. Vet. Microbiol.2004; 100 :83–89. doi: 10.1016/j.vetmic.2004.01.013.92. Cao J., Henry P.R., Ammerman C.B., Miles R.D., Littell R.C. Relative bioavailability of basic zinc sulfate and basic zinc chloride for chicks.J. Appl. Poult. Res.2000; 9 :513–517. doi: 10.1093/japr/9.4.513.93. Batal A.B., Parr T.M., Baker D.H. Zinc bioavailability in tetrabasic zinc chloride and the dietary zinc requirement of young chicks fed a soy concentrate diet. Poult. Sci.2001; 80 :87–90. doi: 10.1093/ps/80.1.87.94. Mavromichalis I., Webel D.M., Parr E.N., Baker D.H. Growth-promoting efficacy of pharmacological doses of tetrabasic zinc chloride in diets for nursery pigs. Can.J. Anim. Sci.2001; 81 :387–391. doi: 10.4141/A01-005.95. Zhang B., Guo Y. Beneficial effects of tetrabasic zinc chloride for weanling piglets and the bioavailability of zinc in tetrabasic form relative to ZnO. Anim. Feed Sci. Technol.2007; 135 :75–85. doi: 10.1016/j.anifeedsci.2006.06.006.96. Zhang G., Xia T., Zhao J., Liu L., He P., Zhang S., Zhang L. Moderate tetrabasic zinc chloride supplementation improves growth performance and reduces diarrhea incidence in weaned pigs. Asian-Australas.J. Anim. Sci.2020; 33 :264–276. doi: 10.5713/ajas.18.0914.97. Nitrayova S., Windisch W., von Heimendahl E., Müller A., Bartelt J. Bioavailability of zinc from different sources in pigs.J. Anim. Sci.2012; 90 :185–187. doi: 10.2527/jas.53895.98. Zhang Y., Ward T.L., Ji F., Peng C., Zhu L., Gong L., Dong B. Effects of zinc sources and levels of zinc amino acid complex on growth performance, hematological and biochemical parameters in weanling pigs. Asian-Australas.J. Anim. Sci.2018; 31 :1267–1274. doi: 10.5713/ajas.17.0739.99. Wedekind K.J., Hortin A.E., Baker D.H. Methodology for assessing zinc bioavailability: Efficacy estimates for zinc-methionine, zinc sulfate, and zinc oxide.J. Anim. Sci.1992; 70 :178–187. doi: 10.2527/1992.701178x.100. Bouwhuis M.A., Sweeney T., Mukhopadhya A., Thornton K., McAlpine P.O., O’Doherty J.V. Zinc methionine and laminarin have growth-enhancing properties in newly weaned pigs influencing both intestinal health and diarrhoea occurrence.J. Anim. Physiol. Anim. Nutr. (Berl.) 2017; 101 :1273–1285. doi: 10.1111/jpn.12647.101. Woodworth J.C., Tokach M.D., Nelssen J.L., Goodband R.D., Quinn P.R.O., Fakler T.M. Interactive Effects of Diet Complexity, Zinc Source and Feed-grade Antibiotics on Weanling Pig Growth Performance.J. Anim. Vet. Adv.2005; 4 :688–693.102. Hollis G.R., Carter S.D., Cline T.R., Crenshaw T.D., Cromwell G.L., Hill G.M., Kim S.W., Lewis A.J., Mahan D.C., Miller P.S., et al. Effects of replacing pharmacological levels of dietary zinc oxide with lower dietary levels of various organic zinc sources for weanling pigs.J. Anim. Sci.2005; 83 :2123–2129. doi: 10.2527/2005.8392123x.103. Wang W., Van Noten N., Degroote J., Romeo A., Vermeir P., Michiels J. Effect of zinc oxide sources and dosages on gut microbiota and integrity of weaned piglets.J. Anim. Physiol. Anim. Nutr. (Berl.) 2019; 103 :231–241. doi: 10.1111/jpn.12999.104. Shen J., Chen Y., Wang Z., Zhou A., He M., Mao L., Zou H., Peng Q., Xue B., Wang L., et al. Coated zinc oxide improves intestinal immunity function and regulates microbiota composition in weaned piglets. Br.J. Nutr.2014; 111 :2123–2134. doi: 10.1017/S0007114514000300.105. Singh S. Zinc oxide nanoparticles impacts: Cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Toxicol. Mech. Methods.2019; 29 :300–311. doi: 10.1080/15376516.2018.1553221.106. Wang C., Zhang L., Ying Z., He J., Zhou L., Zhang L., Zhong X., Wang T. Effects of Dietary Zinc Oxide Nanoparticles on Growth, Diarrhea, Mineral Deposition, Intestinal Morphology, and Barrier of Weaned Piglets. Biol. Trace Elem. Res.2018; 185 :364–374. doi: 10.1007/s12011-018-1266-5.107. Ma H., Williams P.L., Diamond S.A. Ecotoxicity of manufactured ZnO nanoparticles—A review. Environ. Pollut.2013; 172 :76–85. doi: 10.1016/j.envpol.2012.08.011.108. Siddiqi K.S., ur Rahman A., Husen A. Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes. Nanoscale Res. Lett.2018; 13 :141. doi: 10.1186/s11671-018-2532-3.109. Pei X., Xiao Z., Liu L., Wang G., Tao W., Wang M., Zou J., Leng D. Effects of dietary zinc oxide nanoparticles supplementation on growth performance, zinc status, intestinal morphology, microflora population, and immune response in weaned pigs.J. Sci. Food Agric.2019; 99 :1366–1374. doi: 10.1002/jsfa.9312.110. Wang C., Zhang L., Su W., Ying Z., He J., Zhang L., Zhong X., Wang T. Zinc oxide nanoparticles as a substitute for zinc oxide or colistin sulfate: Effects on growth, serum enzymes, zinc deposition, intestinal morphology and epithelial barrier in weaned piglets. PLoS ONE.2017; 12 :e0181136. doi: 10.1371/journal.pone.0181136.111. Long L., Chen J., Zhang Y., Liang X., Ni H., Zhang B., Yin Y. Comparison of porous and nano zinc oxide for replacing high-dose dietary regular zinc oxide in weaning piglets. PLoS ONE.2017; 12 :e0182550. doi: 10.1371/journal.pone.0182550.112. Hu C.H., Gu L.Y., Luan Z.S., Song J., Zhu K. Effects of montmorillonite-zinc oxide hybrid on performance, diarrhea, intestinal permeability and morphology of weanling pigs. Anim. Feed Sci. Technol.2012; 177 :108–115. doi: 10.1016/j.anifeedsci.2012.07.028.113. Cho J.H., Liu S.D., Yun W., Kim K.S., Kim I.H. Effect of supplemented microencapsulated zinc oxide and organic acids and pure botanicals on growth performance, nutrient digestibility, blood profiles, feces microflora, and zinc level of feces in weanling pigs. Can.J. Anim. Sci.2019; 99 :66–73. doi: 10.1139/cjas-2017-0114.114. Lei X.J., Kim I.H. Low dose of coated zinc oxide is as effective as pharmacological zinc oxide in promoting growth performance, reducing fecal scores, and improving nutrient digestibility and intestinal morphology in weaned pigs. Anim. Feed Sci. Technol.2018; 245 :117–125. doi: 10.1016/j.anifeedsci.2018.06.011.115. Dong X., Xu Q., Wang C., Zou X., Lu J. Supplemental-coated zinc oxide relieves diarrhoea by decreasing intestinal permeability in weanling pigs.J. Appl. Anim. Res.2019; 47 :362–368. doi: 10.1080/09712119.2019.1645673.116. Kim J.C., Hansen C.F., Mullan B.P., Pluske J.R. Nutrition and pathology of weaner pigs: Nutritional strategies to support barrier function in the gastrointestinal tract. Anim. Feed Sci. Technol.2012; 173 :3–16. doi: 10.1016/j.anifeedsci.2011.12.022.117. Le Floc’h N., Jondreville C., Matte J.J., Seve B. Importance of sanitary environment for growth performance and plasma nutrient homeostasis during the post-weaning period in piglets. Arch. Anim. Nutr.2006; 60 :23–34. doi: 10.1080/17450390500467810.118. Jayaraman B., Nyachoti C.M. Husbandry practices and gut health outcomes in weaned piglets: A review. Anim. Nutr.2017; 3 :205–211. doi: 10.1016/j.aninu.2017.06.002.119. Gibbons R.A., Sellwood R., Burrows M., Hunter P.A. Inheritance of resistance to neonatal E. coli diarrhoea in the pig: Examination of the genetic system. Theor. Appl. Genet.1977; 51 :65–70. doi: 10.1007/BF00299479.120. Bijlsma I.G.W., Bouw J. Inheritance of K88-mediated adhesion of Escherichia coli to jejunal brush borders in pigs: A genetic analysis. Vet. Res. Commun.1987; 11 :509–518. doi: 10.1007/BF00396368.121. Fontanesi L., Bertolini F., Dall’Olio S., Buttazzoni L., Gallo M., Russo V. Analysis of Association between the MUC4 g.8227C>G Polymorphism and Production Traits in Italian Heavy Pigs Using a Selective Genotyping Approach. Anim. Biotechnol.2012; 23 :147–155. doi: 10.1080/10495398.2011.653462.122. Rasschaert K., Verdonck F., Goddeeris B.M., Duchateau L., Cox E. Screening of pigs resistant to F4 enterotoxigenic Escherichia coli (ETEC) infection. Vet. Microbiol.2007; 123 :249–253. doi: 10.1016/j.vetmic.2007.02.017.123. Nicolai R.W., Sørensen T., Bækbo P. Weaning without Zinc Oxide—Field Experiences. SEGES; Copenhagen, Denmark: 2019.124. Halas D., Heo J.M., Hansen C.F., Kim J.C., Hampson D.J., Mullan B.P., Pluske J.R. Organic acids, prebiotics and protein level as dietary tools to control the weaning transition and reduce post-weaning diarrhoea in piglets. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour.2007; 2 doi: 10.1079/PAVSNNR20072079.125. Heo J.M., Kim J.C., Hansen C.F., Mullan B.P., Hampson D.J., Maribo H., Kjeldsen N., Pluske J.R. Effects of dietary protein level and zinc oxide supplementation on the incidence of post-weaning diarrhoea in weaner pigs challenged with an enterotoxigenic strain of Escherichia coli, Livest. Sci.2010; 133 :210–213. doi: 10.1016/j.livsci.2010.06.066.126. Molist F., Gómez de Segura A., Pérez J.F., Bhandari S.K., Krause D.O., Nyachoti C.M. Effect of wheat bran on the health and performance of weaned pigs challenged with Escherichia coli K88+ Livest. Sci.2010; 133 :214–217. doi: 10.1016/j.livsci.2010.06.067.127. Fernandes C.D., Resende M., Rodrigues L.M., Garbossa C.A.P., Costa L.B., Ferreira R.A., de Abreu M.L.T., Cantarelli V.S. Dietary fiber and zinc additives on performance and intestinal health of Escherichia coli challenged piglets. Sci. Agric.2020; 77 doi: 10.1590/1678-992x-2018-0199.128. Molist F., Hermes R.G., De Segura A.G., Martí-N-Orúe S.M., Gasa J., Manzanilla E.G., Pérez J.F. Effect and interaction between wheat bran and zinc oxide on productive performance and intestinal health in post-weaning piglets. Br.J. Nutr.2011; 105 :1592–1600. doi: 10.1017/S0007114510004575.129. Tugnoli B., Giovagnoni G., Piva A., Grilli E. From acidifiers to intestinal health enhancers: How organic acids can improve growth efficiency of pigs. Animals.2020; 10 :134. doi: 10.3390/ani10010134.130. Tsiloyiannis V.K., Kyriakis S.C., Vlemmas J., Sarris K. The effect of organic acids on the control of porcine post-weaning diarrhoea. Res. Vet. Sci.2001; 70 :287–293. doi: 10.1053/rvsc.2001.0476.131. Bakkali F., Averbeck S., Averbeck D., Idaomar M. Biological effects of essential oils—A review. Food Chem. Toxicol.2008; 46 :446–475. doi: 10.1016/j.fct.2007.09.106.132. Nazzaro F., Fratianni F., De Martino L., Coppola R., De Feo V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals.2013; 6 :1451–1474. doi: 10.3390/ph6121451.133. Rossi B., Toschi A., Piva A., Grilli E. Single components of botanicals and nature-identical compounds as a non-antibiotic strategy to ameliorate health status and improve performance in poultry and pigs. Nutr. Res. Rev.2020:1–17. doi: 10.1017/S0954422420000013.134. Dubreuil J.D. Antibacterial and antidiarrheal activities of plant products against enterotoxinogenic Escherichia coli, Toxins (Basel) 2013; 5 :2009–2041. doi: 10.3390/toxins5112009.135. Brenes A., Viveros A., Chamorro S., Arija I. Use of polyphenol-rich grape by-products in monogastric nutrition. A review. Anim. Feed Sci. Technol.2016; 211 :1–17. doi: 10.1016/j.anifeedsci.2015.09.016.136. Verhelst R., Schroyen M., Buys N., Niewold T. The effects of plant polyphenols on enterotoxigenic Escherichia coli adhesion and toxin binding. Livest. Sci.2010; 133 :101–103. doi: 10.1016/j.livsci.2010.06.035.137. Wang S., Zeng X., Yang Q., Qiao S. Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. Int.J. Mol. Sci.2016; 17 :603. doi: 10.3390/ijms17050603.138. Xiao H., Shao F., Wu M., Ren W., Xiong X., Tan B., Yin Y. The application of antimicrobial peptides as growth and health promoters for swine.J. Anim. Sci. Biotechnol.2015; 6 :1–6. doi: 10.1186/s40104-015-0018-z.139. Mine Y., Kovacs-Nolan J. Chicken egg yolk antibodies as therapeutics in enteric infectious disease: A review.J. Med. Food.2002; 5 :159–169. doi: 10.1089/10966200260398198.140. Pérez-Bosque A., Polo J., Torrallardona D. Spray dried plasma as an alternative to antibiotics in piglet feeds, mode of action and biosafety. Porc. Health Manag.2016; 2 :16. doi: 10.1186/s40813-016-0034-1.141. Pieper R., Villodre Tudela C., Taciak M., Bindelle J., Pérez J.F., Zentek J. Health relevance of intestinal protein fermentation in young pigs. Anim. Health Res. Rev.2016; 17 :137–147. doi: 10.1017/S1466252316000141.142. Wellock I.J., Fortomaris P.D., Houdijk J.G.M., Kyriazakis I. Effects of dietary protein supply, weaning age and experimental enterotoxigenic Escherichia coli infection on newly weaned pigs: Health. Animal.2008; 2 :834–842. doi: 10.1017/S1751731108002048.143. Nyachoti C.M., Omogbenigun F.O., Rademacher M., Blank G. Performance responses and indicators of gastrointestinal health in early-weaned pigs fed low-protein amino acid-supplemented diets.J. Anim. Sci.2006; 84 :125–134. doi: 10.2527/2006.841125x.144. Yue L.Y., Qiao S.Y. Effects of low-protein diets supplemented with crystalline amino acids on performance and intestinal development in piglets over the first 2 weeks after weaning. Livest. Sci.2008; 115 :144–152. doi: 10.1016/j.livsci.2007.06.018.145. Kjeldsen N.J., Lynegaard J.C., Bache J.K. Low Protein for Weaned Pigs Can Reduce Diarrhoea. SEGES; Copenhagen, Denmark: 2019.146. Wan K., Li Y., Sun W., An R., Tang Z., Wu L., Chen H., Sun Z. Effects of dietary calcium pyruvate on gastrointestinal tract development, intestinal health and growth performance of newly weaned piglets fed low-protein diets.J. Appl. Microbiol.2020; 128 :355–365. doi: 10.1111/jam.14494.147. Heo J.M., Kim J.C., Hansen C.F., Mullan B.P., Hampson D.J., Pluske J.R. Effects of feeding low protein diets to piglets on plasma urea nitrogen, faecal ammonia nitrogen, the incidence of diarrhoea and performance after weaning. Arch. Anim. Nutr.2008; 62 :343–358. doi: 10.1080/17450390802327811.148. Ren M., Zhang S.H., Zeng X.F., Liu H., Qiao S.Y. Branched-chain amino acids are beneficial to maintain growth performance and intestinal immune-related function in weaned piglets fed protein restricted diet. Asian-Australas.J. Anim. Sci.2015; 28 :1742–1750. doi: 10.5713/ajas.14.0131.149. Niu Q., Li P., Hao S., Zhang Y., Kim S.W., Li H., Ma X., Gao S., He L., Wu W., et al. Dynamic distribution of the gut microbiota and the relationship with apparent crude fiber digestibility and growth stages in pigs. Sci. Rep.2015; 5 :1–7. doi: 10.1038/srep09938.150. Pascoal L.A.F., Thomaz M.C., Watanabe P.H., Ruiz U.D.S., Amorim A.B., Daniel E., Silva S.Z.D. Purified cellulose, soybean hulls and citrus pulp as a source of fiber for weaned piglets. Sci. Agric.2015; 72 :400–410. doi: 10.1590/0103-9016-2014-0210.151. Molist F., de Segura A.G., Gasa J., Hermes R.G., Manzanilla E.G., Anguita M., Pérez J.F. Effects of the insoluble and soluble dietary fibre on the physicochemical properties of digesta and the microbial activity in early weaned piglets. Anim. Feed Sci. Technol.2009; 149 :346–353. doi: 10.1016/j.anifeedsci.2008.06.015.152. González-Ortiz G., Pérez J.F., Hermes R.G., Molist F., Jiménez-Díaz R., Martín-Orúe S.M. Screening the ability of natural feed ingredients to interfere with the adherence of enterotoxigenic Escherichia coli (ETEC) K88 to the porcine intestinal mucus. Br.J. Nutr.2014; 111 :633–642. doi: 10.1017/S0007114513003024.153. González-Ortiz G., Hermes R.G., Jiménez-Díaz R., Pérez J.F., Martín-Orúe S.M. Screening of extracts from natural feed ingredients for their ability to reduce enterotoxigenic Escherichia coli (ETEC) K88 adhesion to porcine intestinal epithelial cell-line IPEC-J2. Vet. Microbiol.2013; 167 :494–499. doi: 10.1016/j.vetmic.2013.07.035.154. Hansen C.F., Riis A.L., Bresson S., Højbjerg O., Jensen B.B. Feeding organic acids enhances the barrier function against pathogenic bacteria of the piglet stomach. Livest. Sci.2007; 108 :206–209. doi: 10.1016/j.livsci.2007.01.059.155. Jackman J.A., Boyd R.D., Elrod C.C. Medium-chain fatty acids and monoglycerides as feed additives for pig production: Towards gut health improvement and feed pathogen mitigation.J. Anim. Sci. Biotechnol.2020; 11 :1–15. doi: 10.1186/s40104-020-00446-1.156. Namkung H., Li M., Gong J., Yu H., Cottrill M., De Lange C.F.M. Impact of feeding blends of organic acids and herbal extracts on growth performance, gut microbiota and digestive function in newly weaned pigs. Can.J. Anim. Sci.2004; 84 :697–704. doi: 10.4141/A04-005.157. Roselli M., Finamore A., Britti M.S., Bosi P., Oswald I., Mengheri E. Alternatives to in-feed antibiotics in pigs: Evaluation of probiotics, zinc or organic acids as protective agents for the intestinal mucosa. A comparison of in vitro and in vivo results. Anim. Res.2005; 54 :203–218. doi: 10.1051/animres:2005012.158. Ferrara F., Tedin L., Pieper R., Meyer W., Zentek J. Influence of medium-chain fatty acids and short-chain organic acids on jejunal morphology and intra-epithelial immune cells in weaned piglets.J. Anim. Physiol. Anim. Nutr. (Berl.) 2017; 101 :531–540. doi: 10.1111/jpn.12490.159. Hanczakowska E., Szewczyk A., Okoñ K. Effects of dietary caprylic and capric acids on piglet performance and mucosal epithelium structure of the ileum.J. Anim. Feed Sci.2011; 20 :556–565. doi: 10.22358/jafs/66213/2011.160. Piva A., Morlacchini M., Casadei G., Gatta P.P., Biagi G., Prandini A. Sodium butyrate improves growth performance of weaned piglets during the first period after weaning. Ital.J. Anim. Sci.2002; 1 :35–41. doi: 10.4081/ijas.2002.35.161. Grilli E., Tugnoli B., Foerster C.J., Piva A. Butyrate modulates inflammatory cytokines and tight junctions components along the gut of weaned pigs.J. Anim. Sci.2016; 94 :433–436. doi: 10.2527/jas.2015-9787.162. Xiong H., Guo B., Gan Z., Song D., Lu Z., Yi H., Wu Y., Wang Y., Du H. Butyrate upregulates endogenous host defense peptides to enhance disease resistance in piglets via histone deacetylase inhibition. Sci. Rep.2016; 6 :1–12. doi: 10.1038/srep27070.163. Bonetti A., Tugnoli B., Rossi B., Giovagnoni G., Piva A., Grilli E. Nature-Identical Compounds and Organic Acids Reduce E. coli K88 Growth and Virulence Gene Expression In Vitro. Toxins (Basel) 2020; 12 :468. doi: 10.3390/toxins12080468.164. Bosi P., Sarli G., Casini L., De Filippi S., Trevisi P., Mazzoni M., Merialdi G. The influence of fat protection of calcium formate on growth and intestinal defence in Escherichia coli K88-challenged weanling pigs. Anim. Feed Sci. Technol.2007; 139 :170–185. doi: 10.1016/j.anifeedsci.2006.12.006.165. Ren C., Zhou Q., Guan W., Lin X., Wang Y., Song H., Zhang Y. Immune response of piglets receiving mixture of formic and propionic acid alone or with either capric acid or bacillus licheniformis after Escherichia coli challenge. Biomed Res. Int.2019; 2019 doi: 10.1155/2019/6416187.166. Si W., Gong J., Tsao R., Zhou T., Yu H., Poppe C., Johnson R., Du Z. Antimicrobial activity of essential oils and structurally related synthetic food additives towards selected pathogenic and beneficial gut bacteria.J. Appl. Microbiol.2006; 100 :296–305. doi: 10.1111/j.1365-2672.2005.02789.x.167. Zeghib A., Kabouche A., Laggoune S., Calliste C.A., Simon A., Bressolier P., Aouni M., Duroux J.L., Kabouche Z. Antibacterial, antiviral, antioxidant and antiproliferative activities of thymus guyonii essential oil. Nat. Prod. Commun.2017; 12 :1651–1654. doi: 10.1177/1934578X1701201032.168. Omonijo F.A., Ni L., Gong J., Wang Q., Lahaye L., Yang C. Essential oils as alternatives to antibiotics in swine production. Anim. Nutr.2018; 4 :126–136. doi: 10.1016/j.aninu.2017.09.001.169. Huang Y., Yoo J.S., Kim H.J., Wang Y., Chen Y.J., Cho J.H., Kim I.H. Effects of dietary supplementation with blended essential oils on growth performance, nutrient digestibility, blood profiles and fecal characteristics in weanling Pigs. Asian-Australas.J. Anim. Sci.2010; 23 :607–613. doi: 10.5713/ajas.2010.80120.170. Li P., Piao X., Ru Y., Han X., Xue L., Zhang H. Effects of adding essential oil to the diet of weaned pigs on performance, nutrient utilization, immune response and intestinal health. Asian-Australas.J. Anim. Sci.2012; 25 :1617–1626. doi: 10.5713/ajas.2012.12292.171. Tian Q.Y., Piao X.S. Essential oil blend could decrease diarrhea prevalence by improving antioxidative capability for weaned pigs. Animals.2019; 9 :847. doi: 10.3390/ani9100847.172. Jiang X.R., Li X.L., Awati A., Bento H., Zhang H.J., Bontempo V. Effect of an essential oils blend on growth performance, and selected parameters of oxidative stress and antioxidant defence of Escherichia coli challenged piglets.J. Anim. Feed Sci.2017; 26 :38–43. doi: 10.22358/jafs/69254/2017.173. Thacker P.A. Alternatives to antibiotics as growth promoters for use in swine production: A review.J. Anim. Sci. Biotechnol.2013; 4 :1–12. doi: 10.1186/2049-1891-4-35.174. Nezhadali A., Nabavi M., Rajabian M., Akbarpour M., Pourali P., Amini F. Chemical variation of leaf essential oil at different stages of plant growth and in vitro antibacterial activity of Thymus vulgaris Lamiaceae, from Iran. Beni-Suef Univ.J. Basic Appl. Sci.2014; 3 :87–92. doi: 10.1016/j.bjbas.2014.05.001.175. Grilli E., Tugnoli B., Passey J.L., Stahl C.H., Piva A., Moeser A.J. Impact of dietary organic acids and botanicals on intestinal integrity and inflammation in weaned pigs. BMC Vet. Res.2015; 11 :96. doi: 10.1186/s12917-015-0410-0.176. Lima M.C., Paiva de Sousa C., Fernandez-Prada C., Harel J., Dubreuil J.D., de Souza E.L. A review of the current evidence of fruit phenolic compounds as potential antimicrobials against pathogenic bacteria. Microb. Pathog.2019; 130 :259–270. doi: 10.1016/j.micpath.2019.03.025.177. Dubreuil J.D. Fruit extracts to control pathogenic Escherichia coli : A sweet solution. Heliyon.2020; 6 :e03410. doi: 10.1016/j.heliyon.2020.e03410.178. Bouarab-Chibane L., Forquet V., Lantéri P., Clément Y., Léonard-Akkari L., Oulahal N., Degraeve P., Bordes C. Antibacterial Properties of Polyphenols: Characterization and QSAR (Quantitative Structure–Activity Relationship) Models. Front. Microbiol.2019; 10 :829. doi: 10.3389/fmicb.2019.00829.179. Reggi S., Giromini C., Dell’Anno M., Baldi A., Rebucci R., Rossi L. In Vitro Digestion of Chestnut and Quebracho Tannin Extracts: Antimicrobial Effect, Antioxidant Capacity and Cytomodulatory Activity in Swine Intestinal IPEC-J2 Cells. Animals.2020; 10 :195. doi: 10.3390/ani10020195.180. Namkung W., Thiagarajah J.R., Phuan P., Verkman A.S. Inhibition of Ca2+-activated Cl- channels by gallotannins as a possible molecular basis for health benefits of red wine and green tea. FASEB J.2010; 24 :4178–4186. doi: 10.1096/fj.10-160648.181. Verhelst R., Schroyen M., Buys N., Niewold T. Selection of Escherichia coli heat-labile toxin (LT) inhibitors using both the gm1-elisa and the cAMP Vero cell assay. Foodborne Pathog. Dis.2013; 10 :603–607. doi: 10.1089/fpd.2012.1434.182. Clatworthy A.E., Pierson E., Hung D.T. Targeting virulence: A new paradigm for antimicrobial therapy. Nat. Chem. Biol.2007; 3 :541–548. doi: 10.1038/nchembio.2007.24.183. Rasko D.A., Sperandio V. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov.2010; 9 :117–128. doi: 10.1038/nrd3013.184. Santos-Buelga C., Scalbert A. Proanthocyanidins and tannin-like compound-nature, occurrence, dietary intake and effects.J. Sci. Food Agric.2000; 80 :1094–1117. doi: 10.1002/(SICI)1097-0010(20000515)80:7 3.0.CO;2-1.185. Yu J., Ahmedna M. Functional components of grape pomace: Their composition, biological properties and potential applications. Int.J. Food Sci. Technol.2013; 48 :221–237. doi: 10.1111/j.1365-2621.2012.03197.x.186. Wei H.K., Xue H.X., Zhou Z.X., Peng J. A carvacrol-thymol blend decreased intestinal oxidative stress and influenced selected microbes without changing the messenger RNA levels of tight junction proteins in jejunal mucosa of weaning piglets. Animal.2017; 11 :193–201. doi: 10.1017/S1751731116001397.187. Gresse R., Chaucheyras-Durand F., Fleury M.A., Van de Wiele T., Forano E., Blanquet-Diot S. Gut Microbiota Dysbiosis in Postweaning Piglets: Understanding the Keys to Health. Trends Microbiol.2017; 25 :851–873. doi: 10.1016/j.tim.2017.05.004.188. Zeng M.Y., Inohara N., Nuñez G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol.2017; 10 :18–26. doi: 10.1038/mi.2016.75.189. Spees A.M., Wangdi T., Lopez C.A., Kingsbury D.D., Xavier M.N., Winter S.E., Tsolis R.M., Bäumler A.J. Streptomycin-Induced Inflammation Enhances Escherichia coli Gut Colonization Through Nitrate Respiration. MBio.2013; 4 :18–26. doi: 10.1128/mBio.00430-13.190. Zhu L.H., Zhao K.L., Chen X.L., Xu J.X. Impact of weaning and an antioxidant blend on intestinal barrier function and antioxidant status in pigs.J. Anim. Sci.2012; 90 :2581–2589. doi: 10.2527/jas.2011-4444.191. Liu H., Hu J., Mahfuz S., Piao X. Effects of Hydrolysable Tannins as Zinc Oxide Substitutes on Antioxidant Status, Immune Function, Intestinal Morphology, and Digestive Enzyme Activities in Weaned Piglets. Animals.2020; 10 :757. doi: 10.3390/ani10050757.192. Gaggìa F., Mattarelli P., Biavati B. Probiotics and prebiotics in animal feeding for safe food production. Int.J. Food Microbiol.2010; 141 :S15–S28. doi: 10.1016/j.ijfoodmicro.2010.02.031.193. Coppa G.V., Zampini L., Galeazzi T., Facinelli B., Ferrante L., Capretti R., Orazio G. Human Milk Oligosaccharides Inhibit the Adhesion to Caco-2 Cells of Diarrheal Pathogens: Escherichia coli, Vibrio cholerae, and Salmonella fyris. Pediatr. Res.2006; 59 :377–382. doi: 10.1203/01.pdr.0000200805.45593.17.194. Sarabia-Sainz H.M., Armenta-Ruiz C., Sarabia-Sainz J.A.I., Guzmán-Partida A.M., Ledesma-Osuna A.I., Vázquez-Moreno L., Montfort G.R.C. Adhesion of enterotoxigenic Escherichia coli strains to neoglycans synthesised with prebiotic galactooligosaccharides. Food Chem.2013; 141 :2727–2734. doi: 10.1016/j.foodchem.2013.05.040.195. Hermes R.G., Manzanilla E.G., Martín-Orúe S.M., Pérez J.F., Klasing K.C. Influence of dietary ingredients on in vitro inflammatory response of intestinal porcine epithelial cells challenged by an enterotoxigenic Escherichia coli (K88) Comp. Immunol. Microbiol. Infect. Dis.2011; 34 :479–488. doi: 10.1016/j.cimid.2011.08.006.196. Stuyven E., Cox E., Vancaeneghem S., Arnouts S., Deprez P., Goddeeris B.M. Effect of β-glucans on an ETEC infection in piglets. Vet. Immunol. Immunopathol.2009; 128 :60–66. doi: 10.1016/j.vetimm.2008.10.311.197. Wan J., Zhang J., Chen D., Yu B., Mao X., Zheng P., Yu J., Huang Z., Luo J., Luo Y., et al. Alginate oligosaccharide alleviates enterotoxigenic: Escherichia coli -induced intestinal mucosal disruption in weaned pigs. Food Funct.2018; 9 :6401–6413. doi: 10.1039/C8FO01551A.198. Dubreuil J.D. Enterotoxigenic Escherichia coli and probiotics in swine: What the bleep do we know? Biosci. Microbiota Food Health.2017; 36 :75–90. doi: 10.12938/bmfh.16-030.199. Roselli M., Finamore A., Britti M.S., Mengheri E. Probiotic bacteria Bifidobacterium animalis MB5 and Lactobacillus rhamnosus GG protect intestinal Caco-2 cells from the inflammation-associated response induced by enterotoxigenic Escherichia coli K88. Br.J. Nutr.2006; 95 :1177. doi: 10.1079/BJN20051681.200. Roselli M., Finamore A., Britti M.S., Konstantinov S.R., Smidt H., de Vos W.M., Mengheri E. The Novel Porcine Lactobacillus sobrius Strain Protects Intestinal Cells from Enterotoxigenic Escherichia coli K88 Infection and Prevents Membrane Barrier Damage.J. Nutr.2007; 137 :2709–2716. doi: 10.1093/jn/137.12.2709.201. Zhang L., Xu Y.Q., Liu H.Y., Lai T., Ma J.L., Wang J.F., Zhu Y.H. Evaluation of Lactobacillus rhamnosus GG using an Escherichia coli K88 model of piglet diarrhoea: Effects on diarrhoea incidence, faecal microflora and immune responses. Vet. Microbiol.2010; 141 :142–148. doi: 10.1016/j.vetmic.2009.09.003.202. Luise D., Bertocchi M., Motta V., Salvarani C., Bosi P., Luppi A., Fanelli F., Mazzoni M., Archetti I., Maiorano G., et al. Bacillus sp. probiotic supplementation diminish the Escherichia coli F4ac infection in susceptible weaned pigs by influencing the intestinal immune response, intestinal microbiota and blood metabolomics.J. Anim. Sci. Biotechnol.2019; 10 doi: 10.1186/s40104-019-0380-3.203. Nordeste R., Tessema A., Sharma S., Kovač Z., Wang C., Morales R., Griffiths M.W. Molecules produced by probiotics prevent enteric colibacillosis in pigs. BMC Vet. Res.2017; 13 :1–12. doi: 10.1186/s12917-017-1246-6.204. Trckova M., Faldyna M., Alexa P., Zajacova Z.S., Gopfert E., Kumprechtova D., Auclair E., D’Inca R. The effects of live yeast Saccharomyces cerevisiae on postweaning diarrhea, immune response, and growth performance in weaned piglets.J. Anim. Sci.2014; 92 :767–774. doi: 10.2527/jas.2013-6793.205. Krause D.O., Bhandari S.K., House J.D., Nyachoti C.M. Response of nursery pigs to a synbiotic preparation of starch and an anti- Escherichia coli K88 probiotic. Appl. Environ. Microbiol.2010; 76 :8192–8200. doi: 10.1128/AEM.01427-10.206. Guerra-Ordaz A.A., González-Ortiz G., La Ragione R.M., Woodward M.J., Collins J.W., Pérez J.F., Martín-Orúe S.M. Lactulose and Lactobacillus plantarum, a potential complementary synbiotic to control postweaning colibacillosis in piglets. Appl. Environ. Microbiol.2014; 80 :4879–4886. doi: 10.1128/AEM.00770-14.207. Badia R., Zanello G., Chevaleyre C., Lizardo R., Meurens F., Martínez P., Brufau J., Salmon H. Effect of Saccharomyces cerevisiae var. Boulardii and β-galactomannan oligosaccharide on porcine intestinal epithelial and dendritic cells challenged in vitro with Escherichia coli F4 (K88) Vet. Res.2012; 43 :1–11. doi: 10.1186/1297-9716-43-4.208. Anand S., Mandal S., Tomar S.K. Effect of Lactobacillus rhamnosus NCDC 298 with FOS in Combination on Viability and Toxin Production of Enterotoxigenic Escherichia coli, Probiotics Antimicrob. Proteins.2019; 11 :23–29. doi: 10.1007/s12602-017-9327-1.209. Bradshaw J.P. Cationic Antimicrobial Peptides. BioDrugs.2003; 17 :233–240. doi: 10.2165/00063030-200317040-00002.210. Wu S., Zhang F., Huang Z., Liu H., Xie C., Zhang J., Thacker P.A., Qiao S. Effects of the antimicrobial peptide cecropin AD on performance and intestinal health in weaned piglets challenged with Escherichia coli, Peptides.2012; 35 :225–230. doi: 10.1016/j.peptides.2012.03.030.211. Cutler S.A., Lonergan S.M., Cornick N., Johnson A.K., Stahl C.H. Dietary inclusion of colicin E1 is effective in preventing postweaning diarrhea caused by F18-positive Escherichia coli in pigs. Antimicrob. Agents Chemother.2007; 51 :3830–3835. doi: 10.1128/AAC.00360-07.212. Jin J., Huang Y., Sun S., Wu Z., Wu S., Yin Z., Bao W. The impact of BPI expression on Escherichia coli f18 infection in porcine kidney cells. Animals.2020; 10 :2118. doi: 10.3390/ani10112118.213. Johnson R.P., Gyles C.L., Huff W.E., Ojha S., Huff G.R., Rath N.C., Donoghue A.M. Bacteriophages for prophylaxis and therapy in cattle, poultry and pigs. Anim. Health Res. Rev.2008; 9 :201–215. doi: 10.1017/S1466252308001576.214. Cha S.B., Yoo A.N., Lee W.J., Shin M.K., Jung M.H., Shin S.W., Cho Y.W., Yoo H.S. Effect of bacteriophage in enterotoxigenic Escherichia coli (ETEC) infected pigs.J. Vet. Med. Sci.2012; 74 :1037–1039. doi: 10.1292/jvms.11-0556.215. Lee C.Y., Kim S.J., Park B.C., Han J.H. Effects of dietary supplementation of bacteriophages against enterotoxigenic Escherichia coli (ETEC) K88 on clinical symptoms of post-weaning pigs challenged with the ETEC pathogen.J. Anim. Physiol. Anim. Nutr. (Berl.) 2017; 101 :88–95. doi: 10.1111/jpn.12513.216. Jamalludeen N., Johnson R.P., Shewen P.E., Gyles C.L. Evaluation of bacteriophages for prevention and treatment of diarrhea due to experimental enterotoxigenic Escherichia coli O149 infection of pigs. Vet. Microbiol.2009; 136 :135–141. doi: 10.1016/j.vetmic.2008.10.021.217. Zhang J., Li Z., Cao Z., Wang L., Li X., Li S., Xu Y. Bacteriophages as antimicrobial agents against major pathogens in swine: A review.J. Anim. Sci. Biotechnol.2015; 6 :39. doi: 10.1186/s40104-015-0039-7.218. Colomer-Lluch M., Imamovic L., Jofre J., Muniesa M. Bacteriophages carrying antibiotic resistance genes in fecal waste from cattle, pigs, and poultry. Antimicrob. Agents Chemother.2011; 55 :4908–4911. doi: 10.1128/AAC.00535-11.219. Marquardt R.R., Jin L.Z., Kim J.W., Fang L., Frohlich A.A., Baidoo S.K. Passive protective effect of egg-yolk antibodies against enterotoxigenic Escherichia coli K88+ infection in neonatal and early-weaned piglets. FEMS Immunol. Med. Microbiol.1999; 23 :283–288. doi: 10.1111/j.1574-695X.1999.tb01249.x.220. Li X., Wang L., Zhen Y., Li S., Xu Y. Chicken egg yolk antibodies (IgY) as non-antibiotic production enhancers for use in swine production: A review.J. Anim. Sci. Biotechnol.2015; 6 :1–10. doi: 10.1186/s40104-015-0038-8.221. Jin L.Z., Baidoo S.K., Marquardt R.R., Frohlich A.A. In vitro inhibition of adhesion of enterotoxigenic Escherichia coli K88 to piglet intestinal mucus by egg-yolk antibodies. FEMS Immunol. Med. Microbiol.1998; 21 :313–321. doi: 10.1111/j.1574-695X.1998.tb01179.x.222. Chernysheva L.V., Friendship R.M., Abvp D., Dewey C.E., Gyles C.L. The effect of dietary chicken egg-yolk antibodies on the clinical response in weaned pigs challenged with a K88+ Escherichia coli isolate.J. Swine Health Prod.2004; 12 :119–122.223. Owusu-Asiedu A., Nyachoti C.M., Baidoo S.K., Marquardt R.R., Yang X. Response of early-weaned pigs to an enterotoxigenic Escherichia coli (K88) challenge when fed diets containing spray-dried porcine plasma or pea protein isolate plus egg yolk antibody.J. Anim. Sci.2003; 81 :1781–1789. doi: 10.2527/2003.8171781x.224. Owusu-Asiedu A., Nyachoti C.M., Marquardt R.R. Response of early-weaned pigs to an enterotoxigenic Escherichia coli (K88) challenge when fed diets containing spray-dried porcine plasma or pea protein isolate plus egg yolk antibody, zinc oxide, fumaric acid, or antibiotic.J. Anim. Sci.2003; 81 :1790–1798. doi: 10.2527/2003.8171790x.225. Yi G.F., Carroll J.A., Allee G.L., Gaines A.M., Kendall D.C., Usry J.L., Toride Y., Izuru S. Effect of glutamine and spray-dried plasma on growth performance, small intestinal morphology, and immune responses of Escherichia coli K88 +-challenged weaned pigs.J. Anim. Sci.2005; 83 :634–643. doi: 10.2527/2005.833634x.226. Bosi P., Casini L., Finamore A., Cremokolini C., Merialdi G., Trevisi P., Nobili F., Mengheri E. Spray-dried plasma improves growth performance and reduces inflammatory status of weaned pigs challenged with enterotoxigenic Escherichia coli K88.J. Anim. Sci.2004; 82 :1764–1772. doi: 10.2527/2004.8261764x.227. Adewole D.I., Kim I.H., Nyachoti C.M. Gut Health of Pigs: Challenge Models and Response Criteria with a Critical Analysis of the Effectiveness of Selected Feed Additives—A Review. Asian-Australas.J. Anim. Sci.2016; 29 :909–924. doi: 10.5713/ajas.15.0795. : Towards Zero Zinc Oxide: Feeding Strategies to Manage Post-Weaning Diarrhea in Piglets